The Laplacian Spectrum of Complex Networks
نویسنده
چکیده
The set of all eigenvalues of a characteristic matrix of a graph, also referred to as the spectrum, is a well-known topology retrieval method. In this paper, we study the spectrum of the Laplacian matrix of an observable part of the Internet graph at the IPlevel, extracted from traceroute measurements performed via RIPE NCC and PlanetLab. In order to investigate the factors influencing the Laplacian spectrum of the observed graphs, we study the following complex network models: the random graph of Erdős-Rényi, the smallworld of Watts and Strogatz and the scale-free graph, derived from a Havel-Hakimi powerlaw degree sequence. Along with these complex network models, we also study the corresponding Minimum Spanning Tree (MST). Extensive simulations show that the Laplacian spectra of complex network models differ substantially from the spectra of the observed graphs. However, the Laplacian spectra of the MST in the Erdős-Rényi random graph with uniformly distributed link weights does bear resemblance to it. Furthermore, we discuss an extensive set of topological characteristics extracted from the Laplacian spectra of the observed real-world graphs as well as from complex network models.
منابع مشابه
Normalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملLaplacian Energy of a Fuzzy Graph
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
متن کاملOptimum decoder for multiplicative spread spectrum image watermarking with Laplacian modeling
This paper investigates the multiplicative spread spectrum watermarking method for the image. The information bit is spreaded into middle-frequency Discrete Cosine Transform (DCT) coefficients of each block of an image using a generated pseudo-random sequence. Unlike the conventional signal modeling, we suppose that both signal and noise are distributed with Laplacian distribution, because the ...
متن کاملThe Laplacian spectrum of neural networks
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these "conventional" graph metrics, the eigenvalue spectrum of the normalized Laplacian d...
متن کاملFault Detection and Isolation of Multi-Agent Systems via Complex Laplacian
This paper studies the problem of fault detection and isolation (FDI) for multi-agent systems (MAS) via complex Laplacian subject to actuator faults. A planar formation of point agents in the plane using simple and linear interaction rules related to complex Laplacian is achieved. The communication network is a directed, and yet connected graph with a fixed topology. The loss of symmetry in the...
متن کاملDynamical and spectral properties of complex networks
Dynamical properties of complex networks are related to the spectral properties of the Laplacian matrix that describes the pattern of connectivity of the network. In particular we compute the synchronization time for different types of networks and different dynamics. We show that the main dependence of the synchronization time is on the smallest nonzero eigenvalue of the Laplacian matrix, in c...
متن کامل